Highly Selective CO₂-to-CO Conversion on Hybrid Silver/Organic Electrodes

Scientific Achievement

First selective conversion of CO₂ to CO (FE>99%) in neutral aqueous electrolytes using planar Ag electrodes and pyridinium-based additives.

Significance and Impact

CO₂ electroreduction in aqueous electrolytes suffers from efficiency loss due to the competiti H₂ evolution reaction (HER). Developing efficient methods to suppress HER is a crucial step toward sustainable CO₂ utilization.

Research Details

- The films are conveniently generated at the surface of the Ag electrode during bulk electrolysis by *in situ* reduction of pyridinium-based organic additives.
- Electrokinetic studies demonstrate the impact of the film on the mechanism of CO₂RR: a proton transfer from HCO₃⁻ is involved in the RDS; electron transfer is more typically observed as the RDS on Ag surfaces.

(a) Faradaic efficiencies and (b) total and partial current densities obtained during CO_2RR at -0.99 V vs RHE in a CO_2 -saturated 0.1 M KHCO₃ electrolyte without or with 10 mM of either **1-Br**₂ or **2-Cl**.

Cross-sectional SEM images and inserted EDS spectrum of a post-catalysis Ag electrode using additive (a) **1-Br**₂ and (b) **2-Cl**.

UNIVERSIT

UC San Diego

A. Thevenon, A. Rosas-Hernández, A. M. Fontani Herreros, T. Agapie, J. C. Peters, (2020) in revision.

